Although there is no unified definition of qualitative research, most authors agree about its main characteristics. Creswell formulated it like this: “Writers agree that one undertakes qualitative research in a natural setting where the researcher is an instrument of data collection who gathers words or pictures, analyzes them inductively, focuses on the meaning of participants, and describes a process that is expressive and persuasive in language” (Creswell, 1998). The gathering of qualitative data takes many forms, but interviewing and observing are among the most frequently used, no matter the theoretical tradition of the researcher.
We so far identified 4 types of QRM suitable for the KCE research projects useful to describe in a first report: interviewing (individually or in focus groups), observing and structuring discussions among experts with a Delphi survey. Others should be developed in the future.
Before entering in the practical aspect of each method, we will briefly describe them in order to give some guidance to choose the most appropriate one.

Following the discussions we have heard in the different focus groups, not every KCE researcher expressed the need to use or understand QRM. Nevertheless, for those interested in QRM, we try to respond to the different researchers’ needs through the notes that will be published in the KCE process book.
[1] For further reading: Silverman (2011)
“The goal of qualitative research is the development of concepts which help us to understand social phenomena in natural (rather than experimental) settings, giving due emphasis to the meanings, experiences, and views of all the participants” (Mays, 1995,p. 43). This quotation gives a nice summary of the specificities of qualitative research methods, which are discussed below.
First, qualitative research encompasses all forms of field research performed with qualitative data. “Qualitative” refers to data in nonnumeric form, such as words and narratives. There are different sources for qualitative data, such as observations, document analysis, interviews, pictures or video’s, etc. Each of these data-gathering techniques has its particular strengths and weaknesses that have to be reflected upon when choosing for a qualitative research technique. In the social sciences, the use of qualitative data is also closely related to different paradigms trying to develop insight in social reality. Elaboration on these paradigms is however outside the scope of this process note [1].
Second, the aim of qualitative research is developing a “thick description[2]” and “grounded or in-depth understanding” of the focus of inquiry. The benefits of well developed qualitative data-collection are precisely richness of data and deeper insight into the problem studied. They do not only target to describe but help also to get more meaningful explanations on a phenomenon. They are also useful in generating hypotheses (Sofaer, 1999). Types of research questions typically answered by qualitative research are “What is going on? What are the dimensions of the concept? What variations exist? Why is this happening?” (Huston,1998). Qualitative research techniques are primarily used to trace “meanings that people give to social phenomena” and “interaction processes”, including the interpretation of these interactions (Pope, 1995). “They allow people to speak in their own voice, rather than conforming to categories and terms imposed on them by others.” (Sofaer, 1999, p. 1105). This kind of research is also appropriate to investigate social phenomena related to health (Huston,1998).
Third, one of the key strengths of qualitative research is that it studies people in their natural settings rather than in artificial or experimental ones. Since health related experiences and beliefs are closely linked to daily life situations it is less meaningful to research them in an artificial context such as an experiment. Therefore data is collected by interacting with people in their own language and observing them in their own territory (Kirk, 1986) or a place of their own choice. This is also referred to as naturalism. Therefore the term naturalistic methods is sometimes used to denote some, but not all, qualitative research (Pope, 2006). Also this characteristic is not always relevant to the use of QRM at the KCE. For example focus group interviews are usually not performed in the natural setting of the participants, but rather in the setting of a meeting room.
A fourth feature of qualitative research in health care is that it often employs several different qualitative methods to answer one and the same research question (Pope, 2006). This relates partly to what is called triangulation (see here).
Finally, qualitative research is always iterative starting with assumptions, hypotheses, mind sets or general theories which change and develop throughout the successive steps of the research process. It is desirable to make these initial assumptions explicit at the beginning of the process and document the acquired new insights or knowledge at each step.
[1] For those interested we refer to Denzin and Lincoln, 2008 a, Denzin and Lincoln, 2008 b, Bourgeault et al., 2012 or in Dutch, Mortelmans, 2009
[2] A “thick description” of a human practice or behavior include not only the focus of the study, but its context as well, such it becomes meaningful to an outsider. The term was introduced in the social science literature by the anthropologist C. Geertz in his essay in 1973
Although it is meaningful to do qualitative research in itself, qualitative research is often defined by reference to quantitative research. Often it is assumed that because qualitative research does not seek to quantify or enumerate, it does not ‘measure’. Qualitative research generally deals with words or discourses rather than numbers, and measurement in qualitative research is usually concerned with taxonomies or classifications. “Qualitative research answers questions such as, ‘what is X, and how does X vary in different circumstances, and why’, rather than ‘how big is X or how many X’s are there?”(Pope, 2006, p3).
By emphasizing the differences the qualitative and quantitative approach are presented as opposites. However, qualitative and quantitative approaches are complementary and are often integrated in one and the same research project. For example in mixed methods research the strengths of quantitative and qualitative research are combined for the purpose of obtaining a richer and deeper understanding (Zang, 2012). Also qualitative data could be analyzed in a quantitative way by for example counting the occurrence of certain words.
Often health services researchers draw on multiple sources of data and multiple strategies of inquiry in order to explore the complex processes, structures and outcomes of health care. It is common that quantitative and qualitative methods answer different questions to provide a well-integrated picture of the situation under study (Patton, 1999). Especially in the field of health services research qualitative and quantitative methods are increasingly being used together in mixed method approaches. The ways QRMs could be used combined or not, are:
Qualitative research only:
<This chapter will be published in December 2013>
There are many ways to interview people, e.g. individually or in focus groups. However, they share some general principles and techniques. Therefore in what follows we address the general principles. After that we present a chapter on individual semi-structured interviews and a chapter on focus groups.
| Attachment | Size |
|---|---|
| fig2_interviewing_people.png | 91 KB |
| fig3_conceptualisation.png | 37.37 KB |
As with any data collection, interviewing (individually or in focus groups) has to be planned within the overall research approach taking into account the particular aims of the qualitative data collection.
The planning of data collection has to be prepared early in the process of the overall research. Qualitative research is time consuming, on the level of data-collection, data-analysis and reporting. All the steps are presented in the next figure.
Figure 2 – Flowchart: interviewing people

In qualitative research we select people who are likely to provide the most relevant information (Huston 1998). In order to design the sample and cover all variability around the research issue, the researchers must have an idea about the different perspectives that should be represented in the sample. This is called “field mapping” of the key players who have a certain interest in the problem under study. The role of this explicit “field mapping” is often underestimated but essential in order to build a purposive sample. It is possible that this “field map” evolves during the data collection. The notion of “representativeness” here is not understood in the statistical way. The idea of representation is seen as a “representation of perspectives, meanings, opinions and ideas” of different stakeholders in relation to the problem researched and their interest. In order to select the participants for interviews or focus groups, one should ask “do we expect that this person can talk about (represent) the perspectives (meanings given to the situation) of this stakeholder group”. The aim is to maximize the opportunity of producing enough data to answer the research question (Green 2004).
Ideally there should be a mixture of different “population characteristics” to ensure that arguments and ideas of the participants represent the opinions and attitudes of the relevant population. Also the unit of analysis should be taken into account. This could be for example “individuals for their personal opinions/experience/expertise” or “individuals because they represent organizational perspectives”.
Moreover in order to make comparisons within and between types of participants, the sample design should take this already into account. In Table 9, two criteria for comparison, for example age and socio-economic status, are already included to allow comparative analysis between age or status groups.
There is a wide range of sampling approaches (e.g. Miles and Huberman 1994, Patton 2002, Strauss and Corbin 2008). It is not uncommon in qualitative research that the research team continues to make sampling decisions during the process of collecting and analysing data. However, a clear documentation of the sampling criteria is needed when doing qualitative research. These criteria should cover all relevant aspects of the research topic. The researcher should identify the central criteria and translate them in observable sample criteria. In addition, the chosen criteria should leave enough variation to explore the research topic (Mortelmans, 2009). For example, in a research about factors influencing the decision to have or refrain from having a refractive eye surgery in the two last years, sampling criteria were:
In what follows we describe a number of sampling strategies. All the sampling strategies are non-probabilistic. A randomized sample is not useful in qualitative research, since generalizability to the general population is not the aim. Moreover with a random sample the researcher would run the risk of selecting people who have no link with the research subject and thus nothing to tell about it (Mortelmans, 2009). In purposive sampling the point of departure are the sampling criteria as described above. There are different forms of purposive sampling:
Table 9 – Example of stratified purposive sample
|
Already had eye surgery or surgery planned |
Considered eye surgery but refrained from having it |
|||||||||||||||||
|
Age |
20-30 |
31-40 |
>40 |
20-30 |
31-40 |
>40 |
||||||||||||
|
Socio-economic status |
a |
b |
c |
a |
b |
c |
a |
b |
c |
a |
b |
c |
a |
b |
c |
a |
b |
c |
|
Number of respondents |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
Recruitment strategies
In order to achieve the expected sample, several ways to find and recruit participants could be suggested:
“Determining adequate sample size in qualitative research is ultimately a matter of judgement and experience in evaluating the quality of the information collected against the uses to which it will be put, the particular research method and purposeful sampling strategy employed, and the research product intended” (Sandelowski, 1995, p. 199).
Typically, in qualitative research one should continue sampling until saturation is reached– this is the point at which no new information or themes are emerging from the data35. Therefore sampling goes hand in hand with data analysis and cannot be planned totally in advance. In reality in every research institution, the sample size is also determined in function of the budget, the time and human resources available. This means often practical aspects of the research project may constrain the size of the sample before theoretical saturation is reached. This is also true for KCE working practice, since budgets and time schedules are limited and fixed.
Beware that saturation can be reached prematurely if one's sampling frame is too narrow, if one's analytical perspective is biased or limited; if the data collection method is not resulting in rich, in-depth information or when the researcher is unable to get beyond the surface.
First contact with a respondent
Box 1: Information to be given during first contact
Background information
Person responsible for the research
Arguments pro praticipation
Costs of the participation
Source: Adapted from Emans, 1986 cited by: Mortelmans, 2009
It is important that people understand that participation in interviews or focus groups is completely voluntary, and that they may choose to leave at any time during the discussion. In addition, it is imperative that participants are aware that they will receive no tangible benefit for participation. That is why the question on offering incentives is often rather contentious (Green et al., 2009). Nevertheless their traveling costs could be reimbursed or they can receive a slight compensation or a small gift.
Also it is recommended to leave the choice of place (where the interview will take place) up to the respondent, in order to facilitate his participation. The context in which the interview takes place determines partly the interactions during the interview. For example a patient at home or in the waiting room of a hospital will disclose other kinds of information, not only because he/she feels more or less comfortable, but also because the setting triggers other associations and thoughts. The interviewer/researcher should be well aware of and anticipate the impact the interview location is likely to have on the data generated.
The same accounts for the characteristics of the interviewer. In the qualitative interview the researcher empathizes with his or her respondents and views their situation from their own points of view53. In general this empathic stance as well as gaining trust from the respondent, is facilitated if the interviewer resembles the respondent in terms of race or other characteristics relevant to the research topic. Gender however is an exception to this rule. There is a debate in the literature about whether same sex or opposite sex is preferable in order to achieve rapport during interviews. Some argue that men are more comfortable in talking with women (especially about intimate topics) that they are with other men (Williams, 1993).
An interview guide should be adapted to the language and vocabulary of the participant(s) and is generally built out of three components:
A topic list covers all the topics the interviewer should ask during the interview. It enables the interviewer to guide the interview while allowing the discussion to flow naturally. The sequence of topics generally moves from the general to the specific. The sequencing of topics can be introduced in a flexible way, and within a general framework of topics, the focus of the discussion can be reset. A topic list is also used in preparation of the semi-structured questionnaire
In a questionnaire semi-structured questions are formulated in speaking language and are posed as such during the interview. The same questions with the same formulation, sometimes in the same sequence, are posed in each interview. The disadvantage however is that it can threaten the natural flow of the conversation.
Both for the topic list and the semi-structured questionnaire, questions/topics should evidently be selected in function of the research objectives. An open ended-formulation of the questions is important in order to enable the interviewee to talk freely without predispositions of the interviewer influencing the narrative. For example, rather than asking “Did you worry about the surgery?”, one could ask “How did you feel about the surgery?”.
A topic list or questionnaire may be adapted or improved in the course of the research, in line with the iterative nature of QRM. The more interviews you have done, the more you know and the more specific or detailed your questions can be (Mortelmans, 2009). However, continuity should be guarded. The topics of the first interview should also be represented in the following interviews, although the latter can also contain much more detailed questions.
For an example of a topic list and a semi-structured questionnaire, see Appendix 6 and Appendix 7 respectively.
The interview starts with an easy opening question which is mostly to set the interviewee at ease, break the ice and get to know each other. With this question the researcher does not expect to get a lot of useful information, the main function is to start up the conversation.
After that the conversation is started with a first general and easy to answer question addressing the content of the research. It can be an attitude question to enable the respondents to roll into the conversation. An example could be: “If you hear breast cancer screening, what are your first thoughts?”.
Next, transition questions involve the respondents in the research subject, for example through asking questions about personal experiences or specific behavior regarding the topic. Attitudinal questions are more difficult to answer and should therefore be addressed later in the interview. An example is “How did you experience your eye surgery?”.
Subsequently the key questions are addressed. These questions are the reason why the interview is done. The interviewer can make clear that the interviewee can take some time to answer these questions. An interview can count up to five key questions each taking up to fifteen minutes to answer them.
Finally, the interview is terminated by means of a concluding question and thanking the interviewee for his participation. Three types of concluding questions can be distinguished:
It is useful to conduct a pilot (focus group) interview in order to test, assess and validate the format and the appropriateness of the topic guide or questionnaire.
Preparations for the interview encompass the recruitment of participants and the making of appointments, becoming knowledgeable about the research topic, including learning the interview guide by heart, anticipating questions of participants regarding the research project, access to a physical space where the interviews can take place and preparation of the recording equipment (Mack,2005). Well functioning of the recorders is crucial, so batteries, tapes and microphones should be carefully checked. It could be practical to foresee a second recorder as back-up. Finally also a notebook, a pen, and of course the topic list or interview guide you prepared for the interview should not be forgotten.
Box 2: What to take to the interview?
Equipment
Interview packet
Source: Adapted from Mack, 2005
Informed consent should be obtained from each participant before starting the interview. Also permission should be asked to record the interview. Also it should be explained how the tapes will be used and stored.
The research aims should be briefly repeated. Probably the research aims were already explained during the first contact with the respondent in order to convince him of participating. Next, all the topics or questions on the checklist or questionnaire need to be addressed. Participants are probed for elaboration of their responses in order to learn everything they want to share about the research topic54. Mobile phones should be switched off during the interview so as not to imply that the participant’s testimony is of secondary importance.
During the interview back-up notes could be taken, the interviewee’s behaviors and contextual aspects of the interview should be observed and documented as part of the field notes. Field notes are expanded as soon as possible after each interview, preferably within 24 hours, while the memory is still fresh (Mack,2005).
To get deeper or redirect the discussion, probing techniques can be used:
The interview is closed by thanking the participant(s).
Transcribing is the procedure for producing a written version of the interview. Ideally, the information recorded during the interview will need to be transcribed in order to enable accurate data analysis. A transcript is a full written literal text of the interview. It often produces a lot of written text.
Good quality transcribing is not simply transferring words from the tape to the page. The wording communicates only a small proportion of the message. A lot of additional information is to be found in the way people speak. Tone and inflection, timing of reactions are important indicators too. With experienced observers and note-takers, a thematic analysis of the notes taken during the interviews could be used as a basis for analysis of the “non-verbal” aspects.
Transcribing is a time consuming and costly part of the study. The research team should consider in advance the question "who should do the transcribing”? Resources may be needed to pay an audio typist, a strategy usually more cost effective than a researcher. Be aware that “typists” are often unfamiliar with the terminology or language used in the interviews which can lead to mistakes and/or prolong the transcribing time.
It may not be essential to transcribe every interview. It is possible to use a technique known as tape and notebook analysis, which means taking notes from a playback of the tape recorded interview and triangulating them with the notes taken by the observers and note-takers. However, bias can occur if inexperienced qualitative researchers attempt tape and notebook analysis. It is certainly preferable to produce full transcripts of the first few interviews. Once the researcher becomes familiar with the key messages emerging from the data tape analysis may be possible. Transcripts are especially valuable when several researchers work with the same data.
In the following paragraph we mention a number of common pitfalls typical for interviews. They are based on the work of Mortelmans (Mortelmans, 2009) and the Qualitative Research Guidelines Project (Cohen, 2008).
Interviews are used in many contexts (journalism, human resource managers, etc.) and for many purposes (entertainment, recruitment of personnel, etc.), hence scientific data collection is only one very specific application, which should not be confused with other applications. The interview is easily trivialized as it is common practice in the media landscape which surrounds us. Fontana and Frey even speak about “the interview society” according to Atkinson and Silverman. Practicing health professionals routinely interview patients during their clinical work, and they may wonder whether simply talking to people constitutes a legitimate form of research (DiCicco-Bloom et al,2006). In qualitative research, however, interviewing is a well established research technique and two types can be distinguished: semi-structured and unstructured. Structured interviews are out of scope here, because they consist of administering structured questionnaires producing quantitative data.
Unstructured interviews are more or less equivalent to guided conversations(DiCicco-Bloom et al,2006). Originally they were part of ethnographers’ field work, consisting of participant observation and interviewing key informants on an ongoing basis to elicit information about the meaning of observed behaviors, interactions, or artifacts (DiCicco-Bloom et al,2006). There is no list of questions, nor an interview guide, the questions asked are based on the responses of the interviewee, as in the natural flow of a conversation (Britten, 1995).
Semi-structured interviews are often the sole data source in a qualitative research project. A set of predetermined open-ended questions is used to guide the interview, but other questions emerging from the dialogue can be added (Britten, 1995). Also the iterative nature of the research process in which preliminary data analysis coincides with data collection, results in altering questions as the research process proceeds. Even so, questions that are not effective in eliciting the necessary information can be dropped or replaced by new ones (Britten, 1995).
Essentially an interview consists of someone who asks questions (interviewer), someone who answers these questions (interviewee) and the registration of those answers in some way (Mortelmans, 2009).
The interview as qualitative research method differentiates from other forms of interviewing used in varied domains. Mortelmans pays attention to four characteristics:
Individual semi-structured interviews are useful to:
Strengths:
Weaknesses:
See “How to plan the research design?”
Individual semi-structured interviews are usually conducted face-to-face and involve one interviewer and one participant. Phone conversations and interviews with more than one participant also qualify as semi-structured interviews, but, in this chapter, we focus on individual, face-to-face interviews (Mack, 2005).
The data collection tools to carry out interviews are topic lists, questionnaires and field notes. Topic lists and questionnaires are described here.
Researchers use field notes to record observations and fragments of speech. Field notes should be written up as soon as possible after the events to which they refer. If possible, short “aide-mémoire” or pocket dictaphones may be used in fieldwork settings, to facilitate later expansion of the notes into proper fieldnotes (Bloor et al, 2006). In the chapter on observational techniques field notes are addressed in more detail (here).
For general issues on sampling, see “Sampling issues in qualitative research: who and how many?”.
In the ideal scenario researchers plan, organize, carry out and transcribe the interviews themselves, to be completely immersed in the data, but in practice the interviews are often carried out by subcontractors and the transcriptions are often done by professional typists.
Preparations for the interview see “How to run the data collection” .
Physical organisation of an interview. Take the following rules into account:
See "How to prepare data for analysis", “How to analyse?” and “How to report qualitative research findings?” .
[1] We propose a example of a ‘standard introductive text’ in appendix.
A focus group is a particular technique in qualitative research. In order to do a focus group interview a group of individuals is gathered in function of their specific profile or characteristics to explore a limited number of “focused questions” (Sofaer,1999). Groups are generally homogenous on a or several criteria relevant to the focus of the discussion.
“In essence, a focus group is a small (usually 6-12 people) group brought together to discuss a particular issue (..) under the direction of a facilitator who has a list of topics to discuss” (Green and Thorogood, 2009, p. 111).
Focus groups are group semi-structured interviews used for the purpose of collecting information focused on a specific subject or area of concern, for exploration and discovery, in-depth understanding of a problem as it is experienced in context, to assess needs, preferences, attitudes and interests related (in the context of KCE research) to health and health care issues.
It differs from individual semi-structured interviews, as the interaction component is used to bring out insights and understandings in ways which questionnaire items or individual questions may not be able to do. The interaction between the moderator and the group, as well as the interaction between group members, may result in more in-depth information, and to elicit differing perspectives related to carefully designed questions. Focus groups are thus not to be considered as a pragmatic time saving substitute for individual semi-structured interviews (e.g. if for any reason the planning does not allow for individual interviews), as the methodological groundings of both techniques differ.
A focus group is not synonymous to ‘group interview’: For a focus group, people are recruited specifically to participate in a research protocol, using a certain method. It is a group interview in the sense that it gathers data simultaneously from different participants (Green and Thorogood, 2009) However it differs from a group interview in the importance that is attached to the interaction among participants. Participants might change their perspective during the focus group interview because of this interaction. In a group interview the interaction between participants is limited, and occurs mainly between interviewer and interviewees.
Figure 4 – Interaction patterns in a group interview versus focus group interview
Depending on sampling strategy and aims, group interviews can take several forms, e.g. consensus panel, focus group, natural group or community interview (Coreil 2005 cited by Green and Thorogood, 2009).
Focus groups can be used as a single research strategy, as well as in combination with other methods in a multi-method research strategy.
The principal feature of focus group interviews is interaction between participants. Kitzinger (2006, p. 22) highlights that this particularity could be used to:
The benefits from focus groups highlighted are:
The limitations of focus groups are related to the limitations of group interviews:
Since focus group interviews are a collective data collection technique requiring direct person-to-person contact (several people have to come together at the same moment and in the same place) a careful planning of all activities and related tasks is necessary.
The data collection by focus group could vary according to (Cohen et al, 2008):
During the preparation of the focus group interviews a set of topics or questions is developed and takes the form of a topic list or questionnaire. For the general principles, see here
A focus group interview is in most cases a structured group process structured by means of an agenda to keep the group focused and on track. A focus-group should be experienced as free-flowing and relatively unstructured, but in reality, the moderator must follow a pre-planned script of specific issues and set goals for the type of information to be gathered. An introduction of up to 15 minutes should be carefully planned, as well as a good opening question. In order to keep the time schedule, as several people are going to participate and answer to the questions, it is important to foresee a maximum duration for each question.
The use of a well designed guide is helpful to compare information from one group to another as it is expected to have more than one focus group for a given topic.
For general issues on sampling, see “Sampling issues in qualitative research: who and how many?”
The starting point for selecting participants for focus groups is to identify the unit of analysis. Is the unit of analysis “individuals for their personal opinions/experience/expertise”, or is it “individuals because they represent organizational perspectives”? It has a major impact on the people invited to the focus group interview and therefore it should be clearly described.
The sample of focus groups will consist of groups of people, instead of individuals. People who are invited to take part need to have an interest in the subject.
Ideally groups have to be internally homogenous on criteria relevant to the topic but externally heterogeneous between groups. Homogeneity in the group capitalizes on people’s shared experiences (Kitzinger, 2006).
It is best to select people who do not know one another, but have similar relationships with the topic being investigated (although it could in practice be difficult for particular topics). Selecting participants who are similar may help them to share ideas more freely and develop an in-depth analysis of a topic (homogeneous groups).
Sometimes, heterogeneous groups can be used after the primary analysis of homogeneous focus groups has started. Heterogeneous groups are used to “confront” diverging opinions. In general terms, heterogeneous groups are composed of representatives of all relevant stakeholders.
In this case, the researcher has to pay attention to potential power differences or inequalities between participants. This may prevent some people from talking freely during the discussion and by consequence prevent the collection of rich data (Kitzinger, 2006).
In the Belgian context, focus group interviews can be carried out with French-speaking or Dutch-speaking and even German-speaking, participants. It is advisable to conduct unilingual groups: it is easier and richer for facilitators and participants. For heterogeneous groups, like stakeholders samples, it could be difficult to separate people in groups according to their mother tongue. In this particular case, it is important that participants express themselves in their mother tongue and to be sure that every participant understands the other language. The moderator has to be thus perfectly bilingual.
A group of six to twelve people is sufficient for a focus group. The ideal size for a focus group is eight to ten respondents. In general, the smaller the group, the more manageable it is. From experience, a group of 6‑8 participants allows enough time for discussion and is easier to manage. Where the purpose is to generate in-depth expression from participants, a smaller group size may be preferable in combination with carrying out more focus groups to attain saturation.
In order to make sure that a group counts enough participants, it is advisable to recruit 25% more people than required (Green and Thorogood, 2009). If too few participants turn up, one should foresee an additional focus group to substitute for the low attendance.
The number of focus group interviews needed depends on the aims and available resources . It is almost impossible to give clear standardized guidelines on the number of focus groups needed.
It is methodologically important for both approaches to conduct at least two focus groups by ‘type of people’. Using only one focus group to arrive at conclusions is risky since the opinions expressed may have had more to do with the group dynamics (i.e. persuasive skills of one or two members) than a true sampling of the opinions of the population that the group represents. Even the preset number of two focus groups is generally too limited to make in-depth analyses, especially if the topics discussed are rather “broad” or general (see also paragraph analysis on continuous comparative method). Having two homogeneous groups that provide different results suggests that more information is necessary (data saturation is not reached). One rule of thumb is to conduct focus groups until they no longer provide any new information on the topic discussed.
3.1.3.8 Human resources necessary
Three people (from the research team) could chair the focus group interview:
As focus group have to be transcribed afterwards. It is also useful to engage the services of an audio typist.
For general principles see “How to run the data collection?”.
In the case of focus groups, once the group of respondents is gathered for the discussion, the moderator should give a brief introduction to set everybody at ease[1]. More concretely, the moderator should:
The Moderator will then begin the focus group interview by asking an ‘icebreaker question’ to facilitate the discussion in the group. Afterwards, he/she will come to the focus of the discussion.
Immediately after the focus group a debriefing has to be foreseen with the moderators/facilitators. The debriefing part is an essential step for the analysis. The debriefing exercise is best supported by a template of dimensions, upon which the moderator/facilitator team needs to comment (example in Appendix).
The facilitators should review the notes taken during the focus group and have a first assessment of clarity and understanding.
They should discuss, compare and record observations or impressions about the group not readily apparent from the notes.
Discuss and record any insights or ideas emerging during the interviews while they are still fresh in the mind.
See also part “How to run the data collection? ”
The length of the focus group should be between 1 and 3 hours.
Allow sufficient time at the beginning to welcome participants, give them an introduction and let them introduce themselves. This part should not take excessive time (about 10 minutes).
Data are collected through different sources: audio or video-taping can be considered. When focus group interviews are recorded, the equipment should be of good quality and easy to use (check batteries and microphone). For larger groups, it may be necessary to use two tape recorders or multi-channel equipment, strategically placed to maximize the probability of recording contributions from all participants.
“Field notes” are an essential part during data collection. They capture all of the essential “non-verbal” information during the focus group interview.
Information has to be collected in an unbiased manner (avoid to filter out information as pre-interpreting it as unimportant, especially in the first focus groups).
The context of statements made during focus groups should be documented (important for giving meaning to the statements in the phase of analysis).
Try to capture nonverbal behavior of group participants (nonverbal reactions of other participants after a participant statement may indicate consensus or disagreement).
For issues on analysis, see “How to analyse the data?”.
In the particular case of focus groups, separate analyses have to be performed on data gathered “within-focus group” and continuously compared “between focus group”. This is also an iterative process.
It is important that statements be understood in the context which they were made. Nonverbal communication observed during the interview can also be very informative.
For reporting, see part “How to report qualitative research findings”
Note that findings are reported by focus group as unit of analysis and not by person.
See section part “How to evaluate qualitative research?”
Vermeire et al propose a checklist specific to critical appraise the quality of focus groups in health care research articles in primary healthcare (Vermeire et al, 2002).
“The purpose of participant observation is partly to confirm what you already know (or think you know) but is mostly to discover unanticipated truths. It is an exercise of discovery” (Mack, 2005, p. 23)
In this chapter we explicitly try to focus on direct observation, instead of participant observation. However, two remarks are in place. One, there is nearly always some participation involved in observing, unless the researcher is covered behind for example a one-way mirror. In all other cases the researcher is present in a setting, hence inevitably becomes part of the setting. Second, in the KCE context participant observation is unlikely to be applied because it is very time consuming, intensive and hence is not compatible with KCE working procedures. However, that does not mean that observational techniques are irrelevant to a KCE researcher. They can be very useful, for example in case of site visits. In the following chapter although participating is not the main goal, it often enters the logics and quotes used.
Observing is more than looking around, it is actively registering information along a number of dimensions, namely places (physical place or setting), persons (the actors involved) and activities (a series of acts) 83. Observing means having attention for (1) the detail of the observation, (2) visual as well as auditory information, (3) the time dimension, (4) the interaction between people, and (5) making links with mental categories (Mortelmans, 2009).
Observing includes roughly three steps:
A number of strenghts have already been described under “When to use observations?”. We could add that:
[1] The Hawthorne effect is the process where human subjects of an experiment change their behavior, simply because they are being studied http://www.experiment-resources.com/hawthorne-effect.html.
Often observations are carried out at the beginning of the data collection phase, but the method can also be used later on during the research process to address questions suggested by data collected though other methods (Mack, 2005). Before starting the observations, the researcher should try to find out as much as possible about the site where he will be observing.
At the KCE, site visits are common to allow the researchers to become familiar with the research topic and setting. This is often combined with interviews or less formalized talks to key persons on the site. After a number of site visits the scope of the research project is determined and precise research questions are formulated.
The role to adopt during observation and the extent to which participants are fully informed are somewhat intertwined84. Typically researchers refer to Gold’s typology of research roles85:
Mack et al.54 describe observing as remaining an “outsider” and simply observing and documenting events or behaviors being studied, while participating is taking part in the activity while also documenting it. Pure observing, without participating is a situations that in fact seldom occurs, because once you are present, you are visible, you influence the activities around you, you participate in some degree. There are two reasons for this participation, or to better understand the local perspective, or in order not to call attention to yourself54.
Covert observation corresponds to two roles in Gold’s typology85, i.e. complete observer and complete participant (see above). Most authors agree that covert observation is only legitimate in very specific circumstances and should be avoided. Mack et al. 54 formulate the following ethical guideline regarding observations: “When conducting participant observation, you should be discreet enough about who you are and what you are doing that you do not disrupt normal activity, yet open enough that the people you observe and interact with do not feel that your presence compromises their privacy.”(p. 16) As with all qualitative research methods, researchers must also protect the identities of the people they observe or with whom they interact, even if informally. “Maintaining confidentiality means ensuring that particual individuals can never be linked to the data they provide”54.
Before you enter the setting and start observing, it might be a good idea to have some questions in mind. It may be helpful to carry a checklist in your pocket to help you remember what you are meant to observe54.
“Fieldnotes are used by researchers to record observations and fragments of remembered speech. Although researchers may use other means of recording (such as video) and other form s of data (such as interview transcripts), fieldnotes remain one of the primary analytic materials used in ethnography.” (p. 82) 35.
Depending on the research questions, the researcher is interested in other aspects of social reality. Mulhalls’ schema84 includes the following types of field notes, each covering an aspect of social reality:
It is particularly important to detail any contradictory or negative cases. Unusual things often reveal most about the setting or situation20.
Documenting observations consists of the following steps54, 86:
The researcher should be well aware of the difference between describing what he observes versus interpreting what he observed. It should be avoided to report interpretations rather than an objective account of the observations54. For example, an interpretive description of a patient could be “he was in terrible pain”. An objective description would be “he was screaming and his face turned pale while grimacing”. “To interpret is to impose your own judgment on what you see” (Mack, 200554, p23). The danger is that interpretations can turn out to be wrong. Therefore the researcher should ask her/himself “what is my evidence for this claim?”54. One way of separating descriptions and interpretations is by separating them visually on paper or screen.
Maps might support your memory and are a tool to reconstruct interactions and movements of people in a room.
Audio or video recordings of observations are generally not permissible unless all ethical requirements are fulfilled and informed consent has been obtained.
As outlined in the general principles of the chapter on interviewing, sampling in qualitative research is seldom statistically based. Also samples of settings or groups to observe are purposive.
Specifically for observation the sampling units are places, locations, and blocks of time, but usually not individuals. The aim is to select ‘information-rich’ cases, but in practice site selection is often a pragmatic decision based on existing networks and accessibility. Ideally however, sites are chosen because they typify some larger population of sites (such as clinics) or perhaps because they are exceptional in some way. Observation methods may be used across multiple sites and one could select the ones representing a range of typical settings (Green et al, 2009).
Observations can be the work of one researcher, a pair of researcher, or a whole team. Which arrangement is most appropriate depends on the research questions and the features of the setting. Also members of a team can disperse to different locations individually, or in pairs or groups, in order to construct a more complete picture of the issues being studied.
One of the advantages of team work is that field notes can be compared and that team members can question each other about assertions being made. “Taking another perspective on validity Graneheim et al. (2001) used multiple data collectors with different perspectives (insider or outsider) to observe the same situation. This may not accord with the idea that every researcher may produce a unique account of a situation that is valid in its own right. But with extensive mutual reflection, as undertaken by Graneheim and colleagues, these combined observations may have consensual validity. However, from a practical standpoint few projects are afforded the luxury of multiple data collectors.” (Mulhall, 200384, p. 309).
Field notes contain a lot of detail and are highly descriptive. In order to find explanations or answers to the research questions, the researcher should develop categories and test them against hypotheses, and refine them. This is an iterative process that starts during the data collection phase.
As with other qualitative research methods it is important that evidence from the data is presented to support the conclusions of the researcher, by means of examples or quotations. The main principles have already been mentioned in (see “How to report qualitative research findings”).
The quality of observational studies depends largely on the quality of the descriptions of data collection and analysis provided by the researcher. Details about how the research was conducted are crucial and should be well documented. For example, how much time was spent in the field, how typical were the events recorded, description of the attempts to verify the observations made, etc.
The general criteria to assess the quality of qualitative research are described here and also apply to observational methods.
So far no observational studies have been carried out at the KCE.
Consensus reaching methods generally used in health care are Delphi panel, nominal group or consensus conference. They are useful to organize “qualitative judgments and, which is concerned to understand the meanings that people use when making decisions about health care.” (Black, 200688, page 132). They are not as such qualitative methods because they may use quantitative data collection tools (questionnaires, scales), and quantitative element in the analysis (statistics).
All the consensus methods cited here are characterized by the provision of information prior to the discussion, privacy (participants express their opinion in private), opportunity for participants to change their view and explicit and transparent derivation of the group decision, based on (statistical) analysis88.
The Delphi method (named so because of the Delphi Oracle) was initiated by the RAND corporation, a nonprofit institution that helps improve policy and decision making through research and analysis[a]. The original definition given in the 50s was that it “entails a group of experts who anonymously reply to questionnaires and subsequently receive feedback in the form of a statistical representation of the "group response," after which the process repeats itself. The goal is to reduce the range of responses and arrive at something closer to expert consensus.”89 Today, the method has evolved and Delphi surveys could aim at different goals or have several designs[b]. It could be define more as “a method for structuring a group communication process” and not as a method to produce consensus90. The method could also be defined as a systematic collection and aggregation tool of informed judgment from a group of experts on specific questions and issues” (Hasson, 201191, p. 1696).
Delphi surveys are used in several domains (politics, psychology, agriculture, etc.) and could vary in different ways. Several types of Delphi often used in health research (non exhaustive) are presented in Table 10.
Table 10 – Types of Delphi designs
|
Design Type |
Aim |
Target panellists |
Administration |
Number of rounds |
Round 1 design |
|
Classical |
To elicit opinion and gain consensus |
Experts selected based on aims of research |
Traditionally postal |
Employs three or more rounds[3] |
Open qualitative first round, to allow panelists to record responses |
|
Modified |
Aim varies according to project design, from predicting future events to achieving consensus |
Experts selected based on aims of research |
Varies, postal, online, etc. |
May employ fewer than 3 rounds |
Panelists provided with pre-selected items, drawn from various sources, within which they are asked to consider their responses |
|
Decision |
To structure decision-making and create the future in reality rather than predicting it |
Decision makers, selected according to hierarchical position and level of expertise |
Varies |
Varies |
Can adopt similar process to classical Delphi |
|
Policy |
To generate opposing views on policy and potential resolutions |
Policy makers selected to obtain divergent opinions |
Can adopt a number of formats including bringing participants together in a group meeting |
Varies |
Can adopt similar process to classical Delphi or 1- preformulating the obvious issues by the research team; |
|
Real time/consensus conference |
To elicit opinion and gain consensus on real time |
Experts selected based on aims of research |
Use of computer technology that panelists use in the same room to achieve consensus in real time rather than post or via Internet94 |
Varies |
Can adopt similar process |
Adapted from Hasson, 201191, p. 1697 and Keeney, 201195
[b] See the special issue 78 of the review ‘Technological Forecasting & Social change” (2011) available at http://www.journals.elsevier.com/technological-forecasting-and-social-ch....
[3] Note that the number of rounds should ideally be based on the saturation of the responses and is difficult to fix in advance
The following questions could be answered by using a consensus reaching method such as the Delphi panel:
A Delphi survey takes several weeks, even if the number of participants is small.
It has to be planned in the beginning of the project or, if the necessity to conduct such a study appears late in the course of the project, it is important to realize that the whole process takes several weeks, depending on the number of rounds needed. The next figure illustrates the whole process and the time needed.
Figure 5 – The Delphi process
Adapted from Slocum et al.93
Delphi could be administrated ‘paper-and-pencil’ by mail or e-mail.
Online Delphi’s are more and more carried out. Software is available to support the data collection and the analysis (Delphi_Survey_Web (DSW)100, Mesydel©101)
The number of rounds is not necessarily defined a priori (often because of budgetary, time or human resources limitations): data collection must stop when the saturation or the consensus is reached.
The Delphi method uses iterative (e-)mailed questionnaires in successive rounds. Because there is no interaction between the respondent and the researcher, the formulation of the questions has to be clear, and definitions should be given where necessary.
The questionnaire of the first round encompasses open-ended questions, to identify items to include in the second round.
Next rounds could be exclusively qualitative or composed of closed questions with scales (from totally agree to totally disagree, i.e. from 1 to 9), or combining both qualitative and quantitative questions. They present a synthesis of the results issued from the previous round.
In the case of closed questions, agreement is usually summarized by using the median and consensus assessed by presenting interquartile ranges for continuous numerical scales97. Graphical presentations of the results are welcomed.
In KCE reports the questionnaires used in each round are presented in appendices.
Participants have to be carefully chosen because of their expertise, experience or knowledge in the field of the research question. In addition, the variety of positions in the field or opinions regarding the subject, should be covered. In that way, lay people could be added to increase the variety of viewpoints102.
They could be identified through publically available bibliographic information102. Snowballing recruitment could be useful to secure easy agreement to panelist invitation and strengthen panelist retention102.
There is no practical limit to the number of participants in a Delphi survey89.
The administrator of the survey develops the questionnaires, identifies, mobilizes and recruits participants, analyses findings and reports them. He/she is responsible for keeping a low attrition rate and insure the coherence between the different steps of the method.
Administrative support could be needed to (e-)mail the questionnaires and manage reminders and answers.
Each step of the Delphi requires a specific analysis.
In a classical Delphi, open-ended questions from round 1 should be content analysed ‘in order to group statements generated by the experts panel into similar areas’95.
Round that uses closed questions should be statistically analysed. Summary statistics are used to decide whether or not consensus is reached. The level of the consensus has to be defined in advance (i.e. 70% of agreement).
There is no agreement on the threshold indicating a consensus, nor how to choose this threshold95. Each researcher has to reflect on it, case by case.
The proposals that have reached consensus should be eliminated from the next round.
Intermediary results are reported directly in the successive questionnaires.
All the consensus and dissensus items are listed and discussed at the end of the process.
It seems that no consensus exists with regards to the standard of methodological rigor to apply. And that “no definitive evidence exists which demonstrates the reliability or validity of the technique” (Keeney, 201195, p. 104). This is partly due to the variety of the Delphi surveys and the constant evolutions in this field91.
We have not identified any checklists to assess the quality of a Delphi survey.
However, the following aspects of the survey could be assessed (adapted from Jillson103 and Hasson91):
A Delphi survey should be reviewed in terms of reliability, validity and trustworthiness to judge its worth91.
For practical tips see the report of the King Baudouin Foundation available in French, Dutch and English93
The aim of this process note is to give an overview and brief description of approaches useful for qualitative data analysis in the context of KCE projects. It will not provide one recipe, but rather a range of perspectives, ways of looking at the data. Depending on the research aim and questions some perspectives are more suited than others.
“Qualitative data analysis (QDA) is the range of processes and procedures whereby we move from the qualitative data that have been collected into some form of explanation, understanding or interpretation of the people and situations we are investigating”. (Lewins et al. 2010)
In general qualitative data analysis means moving from data to meanings or representations. Flick (Flick 2015) defines qualitative data analysis as follows:
“The classification and interpretation of linguistic (or visual) material to make statements about implicit and explicit dimensions and structures of meaning-making in the material and what is represented in it” (p. 5).
The aims of qualitative data analysis are multiple, for example:
There are several ways to analyze textual data. “Unlike quantitative analysis, there are no clear rules or procedures for qualitative data analysis, but many different possible approaches” (Spencer et al. 2014), p. 270). “Qualitative analysis transforms data into findings. No formula exists for that transformation. Guidance, yet. But no recipe.” (Patton 2002)
Alternative traditions vary in terms of basic epistemological assumptions about the nature of the inquiry and the status of the researcher, the main focus and aims of the analytic process (Spencer et al. 2014, p. 272). Generally speaking, the analysis process begins with the data management and end up with abstraction and interpretation, from organizing the data, describing them to explaining them (Spencer et al. 2014).
According to Spencer et al. (2014), the hallmarks of rigorous and well-founded substantive, cross-sectional qualitative data analysis are:
Many concepts and terms are used by qualitative researchers. They are not always standardized and we find it useful to clarify the ones we will use in this process note. This part is therefore not exhaustive. We are largely inspired by by Paillé and Mucchielli (Paillé and Mucchielli 2011) and translated their terminology.
Globally, a generic method for analyzing is used in many situations: How to analyze the data? To get the meaning of the data? It encompasses the technical and intellectual operations and manipulations helping the researcher to catch the meanings.
Classically, 3 generic methods of analysis are used in qualitative health (care) research, each of them using specific tools
Specific traditions are embedded in the generic methods used in health(care) research we described. We give an example for each of them:
Phenomenology focuses on “how human beings make sense of experience and transform experience into consciousness, both individually and as shared meaning” (Patton 2015, p.115). Phenomenology is about understanding the nature or meaning of everyday life. In-depth interviews with people who have directly experienced the phenomenon of interest, is the most used data collection technique. Phenomenology in qualitative research goes back to a philosophical tradition that was first applied to social science by E. H. Husserl to study people’s daily experiences.
Phenomenology will not be developed into detail, because it is less relevant to KCE projects.
Framework analysis has been developed specifically for applied or policy relevant qualitative research, and is a deductive research strategy. In a framework analysis the objectives of the investigation are set in advance. The thematic framework for the content analysis is identified before the research or the qualitative research part in the project sets off.
The decision on using frameworks when analyzing data is closely related to the question for what purpose the qualitative material will be used in the overall research strategy. “Frameworks” are generally deducted from hypotheses of theoretical frameworks: e.g. if the aim of a focus group is trying to get a picture of stakeholders interests and potential conflicting perspectives on a health care issue, and the focus group tries to grasp how stakeholders develop power plays or influence strategies to set agenda’s, a conceptual framework on decision-making processes and power play will serve as a useful tool to orient data-collection and data-analysis.
Applying framework analysis concretely means that the themes emerging from the data are placed in the framework defined a priori. The framework is systematically applied to all the data. Although an analytical framework can be very useful, it is not suited, if the aim is to discover new ideas, since a framework or grid could be blinding (Paillé and Mucchielli 2011).
For the specificity of the analysis of data according to this method see Framework analysis
Grounded theory was developed by Glaser and Strauss in the late 1960s as a methodology for extracting meaning from qualitative data. Typically, the researcher does not start from a preconceived theory, but allows the theory to emerge from the data (Durant-Law 2005). Hence grounded theory is an inductive rather than a deductive methodology. Emergence is also a key assumption in grounded theory: data, information and knowledge are seen as emergent phenomena that are actively constructed. They can only have meaning when positioned in time, space and culture (Durant-Law 2005).
The power of grounded theory lies in the depth of the analysis. Grounded theory explains rather than describes and aims at a deep understanding of phenomena (Durant-Law 2005). Key to grounded theory is the emphasis on theory as the final output of research. Other approaches may stop at the level of description or interpretation of the data (e.g. thematic analysis).
Grounded theory is a complete method, a way of conceptualizing a qualitative research project.
For the specificity of the analysis of data according to this method see Data analysis in the Grounded Theory
The approach chosen depends largely on the design and the aims of the research. Some designs and/or research questions require an inductive, others a deductive approach. Inductive means that themes emerge from the data, while deductive implies a pre-existing theory or framework which is applied to the data. Qualitative data analysis tends to be inductive, which means that the researcher identifies categories in the data, without predefined hypotheses. However, this is not always the case. A qualitative research analysis can also be top down, with predefined categories to which the data are coded, for example a priori concepts can be adopted from the literature or a relevant field. Framework analysis can be used this way.
The next table shows how the different methods, approaches and types of coding relate to each other.
Generic methods, specific methods/ traditions, approaches and type of coding for qualitative analysis
|
Generic methods |
|||
|
Phenomenological examination of the empirical data |
Phenomenology |
Inductive |
Statements |
|
Thematic analysis |
Descriptive analysis Framework analysis |
Mainly deductive Mainly deductive |
Themes |
|
Analysis using conceptualizing categories |
Grounded Theory
|
Mainly inductive Mainly deductive |
Conceptualizing categories |
As in any research method, analyzing collected data is a necessary step in order to draw conclusions. Analyzing qualitative data is not a simple nor a quick task. Done properly, it is systematic and rigorous, and therefore labor-intensive and time-consuming “[…] good qualitative analysis is able to document its claim to reflect some of the truth of a phenomenon by reference to systematically gathered data” (Fielding 1993), in contrast “poor qualitative analysis is anecdotal, unreflective, descriptive without being focused on a coherent line of inquiry.” (Fielding 1993) (Pope et al. 2000, p. 116). Qualitative analysis is a matter of deconstructing the data, in order to construct an analysis or theory (Mortelmans 2009).
The ways and techniques to analyze qualitative data are not easy to describe as it requires a lot of “fingerspitzengefühl” and it is unrealistic to expect a kind of recipe book which can be followed in order to produce a good analysis. Therefore what we present here is a number of hands-on guidelines, which have proven useful to others.
The difficulty of qualitative analysis lies in the lack of standardization and the absence of a universal set of clear-cut procedures which fit every type of data and could be almost automatically applied. Also there are several methods/approaches/traditions for taking the analysis forward (see table). These move from inductive to more deductive, but in practice the researcher often moves back- and forward between the data and the emerging interpretations. Hence induction and deduction are often used in the same analysis. Also elements from different approaches may be combined in one analysis (Pope and Mays 2006).
Different aims may also require different depths of analysis. Research can aim to describe the phenomena being studied, or go on to develop explanations for the patterns observed in the data, or use the data to construct a more general theory (Spencer et al. 2014). Initial coding of the data is usually descriptive, staying close to the data, whereas labels developed later in the analytic process are more abstract concepts (Spencer et al. 2014).
“The analysis may seek simply to describe people’s views or behaviors, or move beyond this to provide explanation that can take the form of classifications, typologies, patterns, models and theories (Pope and Mays 2006, p. 67).”
The two levels of analysis can be described as following:
The selected approach is part of the research design, hence chosen at the beginning of the research process.
In what follows we describe a generic theoretic process for qualitative data analysis.
Each theoretical approach adds its own typical emphases. The most relevant approaches are described in next section. These steps could also be useful in the processing of qualitative data following a system thinking method [ADD crossrefs].
Independent of the methodological approach, a qualitative analysis always starts with the preparation of the gathered data. Ideally, to enable accurate data analysis the recorded information is transcribed. A transcript is the full length literal text of the interview. It often produces a lot of written text.
Good quality transcribing is not simply transferring words from the tape to the page. The wording is only part of the message. A lot of additional information is to be found in the way people speak. Tone and inflection, timing of reactions are important indicators too. With experienced observers and note-takers, a thematic analysis of the notes taken during the interviews could be used as a basis for analysis of the “non-verbal” communication.
Transcribing is time consuming and costly. The research team should consider in advance the question "who should do the transcribing”? Resources may be needed to pay an audio typist, a strategy usually more cost effective than a researcher. Be aware that “typists” are often unfamiliar with the terminology or language used in the interviews or focus groups which can lead to mistakes and/or prolong the transcribing time.
It may not be essential to transcribe every interview or focus group. It is possible to use a technique known as tape and notebook analysis, which means taking notes from a playback of the tape recorded interview and triangulating them with the notes taken by the observers and note-takers. However, bias can occur if inexperienced qualitative researchers attempt tape and notebook analysis. It is certainly preferable to produce full transcripts of the first few interviews. Once the researcher becomes familiar with the key messages emerging from the data tape analysis may be possible. Transcripts are especially valuable when several researchers work with the same data.
Researchers immerse themselves in the data (interview transcripts and/or field notes), mostly by reading through the transcripts, gaining an overview of the substantive content and identifying topics of interest (Spencer et al, 2014). Doing this, they get familiar with the data.
By reading and re-reading the data in order to develop a profound knowledge of the data, an initial set of labels is identified. This step is very laborious (especially with large amounts of data). Pieces of text are coded, i.e. given a label or a name. Generally, in the qualitative analysis literature, “ data coding” refers to this data management. However data coding refers to different levels of analysis.
Here are some commonly used terms (Paillé and Muchielli, 2011):
Label:
Labeling a text or part of a text is the identification of the topic of the extract, not what is said about it. “What is the extract about?” The labels allow to make a first classification of the documents/ extracts. They are useful in a first quick reading of the corpus.
Example: “Familial difficulties”
Code:
The code is the numerical/truncated form of the label. This tool is not very useful in qualitative data analysis.
Example: “Fam.Diff.”
Theme:
The theme goes further than the label. It requires a more attentive lecture.
“What is the topic more precisely?”
Example: “Difficulties to care for children”
Statement:
Statements are short extracts, short syntheses of the content of the extract. “What is the key message of what is said?”, “What is told?”
The statement is more precise than the theme because it resumes, reformulates or synthetizes the extract. They are mainly used in phenomenology.
Example: The respondent tells that she has financial difficulties because she has to spend time and money to take care of her children.
Conceptualizing category:
Conceptualizing categories are the substantive designations of phenomena occurring in the extract of the analyzed corpus. Hence, this approaches theory construction.
Example: “Parental overload”
These types of coding terms are generally more specific to certain types of qualitative data analysis methods (Paillé and Muchielli, 2011).
By coding qualitative data, meanings are isolated in function of answering the research question. One piece of text may belong to more than one category or label. Hence there is likely to be overlap between categories. Major attention should be paid to “rival explanations” or interpretations about the data.
For further detailed information on coding qualitative data:
Saldaña J. The coding manual for qualitative researchers. 2nd edition ed. London: Sage Publications; 2013.
In a third step the categories are further refined and reduced by being grouped together. “While reading through extracts of the data that have been labelled in a particular way, the researchers assesses the coherence of the data to see whether they are indeed ‘about the same thing’ and whether labels need to be amended and reapplied to the data” (Spencer et al. 2014a), p. 282).
Word processors or software for qualitative data analysis [LAK1] will prove to be very helpful at this stage.
[LAK1]Add crosslink vers section process book existante
During the analysis the researcher might (as a third step) constantly compare the constructed categories with new data, and the new categories with already analyzed data. This results in a kind of inductive cycle of constant comparison to fine tune categories and concepts arising from the data. NB: In the particular case of focus groups, separate analyses have to be performed on data gathered “within-focus group” and continuously compared “between focus group”. This is also an iterative process.
New data collection could also be necessary to verify new point of views or insights emerging from the analysis.
Before moving to the more interpretive stage of analysis, the researchers may decide to write a description for each subtheme in the study (Spencer et al., 2014).
“Taking each theme in turn, the researcher reviews all the relevant data extracts or summaries, mapping the range and diversity of views and experiences, identifying constituent elements and underlying dimensions, and proposing key themes or concepts that underpin them. The process of categorization typically involves moving from surface features of the data to more analytic properties. Researchers may proceed through several iterations, comparing and combining the data at higher levels of abstraction to create more analytic concepts or themes, each of which may be divided into a set of categories. Where appropriate, categories may be further refined and combined into more abstract classes. Dey (1993) uses the term ‘splitting’ and ‘slicing’ to describe the way ideas are broken down and then recombined at a higher level – whereas splitting gives greater precision and detail, slicing achieves greater integration and scope. In this way, more descriptive themes used at the data management stage may well undergo a major transformation to form part of a new, more abstract categorical or classificatory system” (Spencer et al., 2014, p. 285). At this stage typologies can be created.
Findings can be presented in a number of ways, there is no specific format to follow.
When writing up findings issued from interviews or texts qualitative researchers often use quotes. Quotes are useful in order to (Corden and Roy 2006):
Ideally, quotes are anonymous and are accompanied by a pseudonym or description of the respondents. For example, in a research about normal birth, this could be: (Midwife, 36 years). There are however exceptions the rule of anonymity, e.g. stakeholder interviews, in which the identity of the respondent is important for the interpretation of the findings. In that case the respondent should self-evidently be informed and his agreement is needed in order to proceed.
Also in terms of lay out quotations should be different from the rest of the text, for example by using indents, italic fond or quotation marks. Quotes are used to strengthen the argument, but should be used sparingly and in function of the findings. Try to choose citations in a way that all respondents are represented. Be aware that readers might give more weight to themes illustrated with a quotation.
When the research is conducted in another language than the language of the report in which the findings are presented, quotes are most often translated. “As translation is also an interpretive act, meaning may get lost in the translation process (van Nes et al.), p. 313)”. It is recommended to stay in the original language as long and as much as possible and delay the use of translations to the stage of writing up the findings (van Nes et al.).
KCE practice is to translate quotes only for publications in international scientific journals, but not for KCE reports. Although KCE reports are written in English, inserted quotes are in Dutch or French to stay close to the original meaning. The authors should pay attention to the readability of the text and make sure that the text without quotes is comprehensive to English speaking readers.
So far, this general a-theoretic procedure reflects what in the literature is called the general inductive approach for analyzing qualitative data. It does not aim at the construction of theories, but the mere description of emerging themes. It provides a simple, straightforward approach for deriving findings in the context of focused research questions without having to learn an underlying philosophy or technical language associated with other qualitative analysis approaches (Thomas, 2006).
Adapted from Paillé and Muchielli , 2011.
The thematic analysis is a process to reduce data. It is not a deep analysis, but rather to describe the topic(s) appearing in the corpus. “Thematization” is a preliminary step in all types of analysis of qualitative data. It consists of transposing the corpus into a number of themes issued from the analyzed content and according to the problematic.
A first step is the location, i.e. the listing of all the themes pertinent for the research question. The second step is to document it: identify the importance of specific themes, repetitions, crosschecks, what goes together, what goes opposite…
Adapted from Paillé and Muchielli , 2011.
In a thematic analysis, the analyst will search to identify and organize themes in the corpus. We will call this process the ‘Thematization’ of the corpus. This is a set of words aiming to identify what is covered in the corresponding extract of the corpus text, while providing guidance on the substance of what is said. The extract of the text is called ‘a unit of signification’, i.e. sentence(s) linked to a similar idea, topic or theme. Inference is the transformation of the unit of signification to themes.
Adapted from Paillé and Muchielli , 2011.
The definition of the themes depends on the framework of the research and the expected level of generality or inference.
Indeed, the analysis will be carried out in a specific framework, i.e. the aim of the research, and with a certain orientation and some presuppositions. These are directly linked to the data collection and the position of the analyst.
The definition of the themes will depend on the data collection:
Once a researcher is ready to launch the Thematization, (s)he has already done many steps: (s)he has defined the problem(s), focused the study, defined objectives, prepared the data collection, written the interview guide, has interacted with participants and perhaps reoriented or redefined new avenues for the research. Many sources have thus already oriented the work and should be highlighted and explained once again before the start of the analysis. For example, Thematization will not be the same if you search for “representations” than if you search for “strategies”, if you analyze psychological responses or social environment, etc.
The definition of the themes will depend on the position of the researcher
Each analyst has some theoretical background, due to his/her training, previous researches, theoretical knowledge, etc. These elements will influence the way they will read, analyze and therefore chose themes to be applied to the corpus. On one hand, (s)he will have a certain level of sensibility that will increase throughout readings, experience of research and reasoning. This level will also improve during the analysis of the corpus itself. On the other hand, s(he) will improve his/her theoretical capacities with new concepts, models, etc.
To process to the analysis, it is important to clearly delimited the theme and label it with a precise formulation. It is easier to begin with a low level of inference, i.e. to be as close as possible of the text or the interview but not to reproduce the verbatim. Interpretation, theorization or making the essence of an experience emerging are not the objectives of a thematic analysis. It is a list and a synthesis of the relevant themes appearing in a corpus.
The risk to end with different themes according to different analyst is not excluded at all and even natural and foreseeable. However it will be limited if everyone adopt the same position with the same goal, i.e. Thematization, and nothing else.
The inference will be done following the next reasoning: because the presence of this or this element or indication in the extract, it is possible to assign it the theme “X”. It is not because a theme appears only once that it is not important.
The thematic analysis will build a thematic tree.
It is a synthetic and structured representation of the analyzed content. Themes are regrouped in main themes subdivided by subsidiary themes and sub-themes in a schematic way.
Adapted from Paillé and Muchielli , 2011.
In order to process a thematic analysis, technical choices should be done:
a) The nature of the support : paper or (specialized) software [see further ADD CROSSREF]
b) The mode of the annotation of the themes (linked to the choice of the software):
Here are the commonly used:
The best choice for the type of annotation is very personnal. One should aim to combine ease of use and efficacy.
c) The type of treatment: continuously or sequential.
1) Themes are elaborated based on a sample of the corpus and listed. To each theme correspond a clear definition. A hierarchy could already be proposed or not
2) The list is then strictly applied to the whole corpus, with the possibility to add a limited number of new themes.
This type of analysis is more effective but goes less in depth. It is however more appropriate for an analysis in team.
To go further in the practical aspect of thematic analysis
Paillé P, Mucchielli A. L'analyse qualitative en sciences humaines et sociales. 2ème ed. Paris: Armand Colin; 2011.
Adapted from Spencer L, Ritchie J, O'connor W, G. M, Ormston R. Analysis in practice. In: Ritchie J, Lewis J, McNaughton Nicholls C, Ormston R, editors. Qualitative research practice. London: Natcen, Sage; 2014. p. 295-345.
In the framework analysis data will be sifted, charted and sorted in accordance with key issues and themes (Srivastava et al. 2009). The analytical journey using this approach could be simply described as:
The familiarization is the same as explained previously [add crossref]. In this approach, it is the occasion to identify topics or issues of interest, recurrent across the data and relevant for the research question, taking thus into account the aims of the study and the subjects contained in the topic guide.
The construction of an initial thematic framework can begin once the list of topics has been reviewed. This step aims to organize the data. The analyst will identify underlying ideas or themes related to particular items. (s)He will use these to group and sort the items according to different levels of generality, building a hierarchical arrangement of themes and subthemes. It results in a sort of table of content of what could be found in the corpus. These themes or issues “may have arisen from a priori themes (…) however it is at this stage that the researcher must allow the data to dictate the themes and issues”. “Although the researcher may have a set of a priori issues, it is important to maintain an open mind and not force the data to fit the a priori issues. However since the research was designed around a priori issues it is most likely that these issues will guide the thematic framework. Ritchie and Spencer stress that the thematic framework is only tentative and there are further chances of refining it at subsequent stages of analysis (1994).” (Srivastava et al. 2009, p.76).
The next step consists of indexing the data, i.e. labelling sections of the corpus according to the thematic framework. This could be done by annotation in the margin of the transcript.
The fourth stage consist of charting: the indexed data are arranged in charts of themes. One chart is built for each theme. Subthemes are headings of the columns while each row represent an interview, transcript or unit of analysis. The content of each cell is a summary of the section of the corpus related to the subtheme.
To write useful summaries, “the general principle should be to include enough details and context so that the analyst is not required to go back to the transcribed data to understand the point being made, but not include so much that the matrices become full of undigested material (…)”. (Spencer et al. 2014b, p 309)
Spencer et al identified 3 requirements essential in order to retain the essence of the original material (Spencer et al. 2014b, p 309).
The last step is the mapping and interpretation. Spencer et al. advice to take the time to do this, have a break, read through the management of the data, etc.
In this phase, concept, categories could be developed. Linkage between them could be described and explanations and patterns could be raised. This could even be performed by a theorizing deduction. The category is issued of a theoretical preexisting referent. The categories exist because a former analysis of the problematic has already been carried out. (Paillé and Muchielli. 2011). In the framework analysis, the main categorical analysis grid is preexisting. This could be because the research object is already well studied, because of the research is commissioned by an institution or because the research is spread through different teams in different locations (Paillé and Muchielli. 2011).
Nivivo [add cross ref] could be very helpful in the management of the data and creation of the matrix when using the Framework approach.
Adapted from Paillé and Muchielli , 2011.
The analysis by conceptualizing categories allows a more in depth analysis. It is more than only the identification of themes, without a link between the annotation of the corpus and the conceptualizing of the data. It is more than a synthesis of the material. It includes an intention to analyze, to reach the meaning and use then a type of annotation reflecting the comprehension made by the analyst.
Adapted from Paillé and Muchielli , 2011.
A category is a textual production, under the form of a brief expression and allowing to name a phenomenon through a conceptual reading of the corpus. A category responds to “Given my problematic, what is this phenomenon?”, “how can I name this phenomenon conceptually?”
A category belongs to a set of categories, and makes sense in regarding the other categories. It is a matter of relationships between categories. A category is for the analyst an attempt to comprehend, while for the reader it is an access to the meaning. It encompasses the evocation of what is said but is also conceptually rich. It induces a precise mental image of a dynamic or a sequence of events.
Adapted from Paillé and Muchielli , 2011.
Three types of processes could be implied in the categorization: an analytic description, an interpretative deduction and a theorizing induction. But in practice these distinctions will progressively blur. The analytic description is a first step, closer to the text and is a preliminary descriptive work.
As for the thematic coding, it is important to search for the right level or the right context. Here also it depends on the position of the researcher and the context of the research.
For the technical aspects of the coding, we proposed to read and apply the considerations proposed for the thematic coding.
Key to grounded theory is the idea that the researcher builds theories from empirical data. Strauss and Corbin (Strauss and Corbin 1998) define theory as “a set of well-developed concepts related through statements of relationship, which together constitute an integrated framework that can be used to explain or predict phenomena” (p. 51). The aim is to produce general statements based on specific cases (analytic induction). Essential is that the insights emerge from the data. It is a theorizing induction process. Other core features are the cyclic approach and the constant comparison.
The cyclic approach is already apparent during data collection, but also in data analysis. Data collection is followed by preliminary data analysis, which is followed by new data collection etc. After each analytic phase, the topic list is adapted and information is collected in a more directed way. The researcher tries to fill in blind spots in his analysis and the testing of hypotheses. Hence, data analysis is generally expected to be an iterative process. Especially in the grounded theory approach constant comparative analysis is emphasized. This means that overall data collection and data-analysis are not organized in a strict sequential way. Constant comparative analysis is a process whereby data collection and data analysis occur on an ongoing basis. The interview is transcribed and analyzed as soon as possible, preferably before the next interview takes place. Any interesting finding is documented and incorporated into the next interview. The process is repeated with each interview until saturation is reached. As a result it could be possible that the initial interviews in a research project differ a lot from the later interviews as the interview schedule is continuously adapted and revised. For this reason researchers have to clarify and document on how structured or unstructured their data-collection method is and keep memos of the process. Notes and observations made at the time of the interview are re-examined, challenged, amended, and/or confirmed using transcribed audio or video tapes. One expects that all members of the research team participate in a review of the final interpretation, in which data and analysis are again re-examined, analyzed, evaluated, and confirmed. The use of more than one analyst can improve the consistency or reliability of analyses.
Within the analysis the cyclic character is also evident from the constant comparison: the researcher tries to falsify his findings through the integration of new data and see whether the theory holds. Data is broken down in small parts (coding), in order to rebuild by identifying relationships between parts.
The analytic process of breaking down and rebuilding data in grounded theory happens in several steps:
the identification of an initial set of themes or categories (called codes[1]). “The analytic process through which concepts are identified and their properties and dimensions are discovered” (Strauss and Corbin 1998, p. 101). In this stage the data is divided into bits of text, which are given a label. This means the researcher isolates meaningful parts relevant to answer the research question.[see before]
This is a way of refining the initial codes. “The process of relating categories to their subcategories termed “axial” because coding occurs around the axis of a category, linking categories at the level of properties and dimensions” (Strauss and Corbin 1998, p. 123). Open coding results in a long list of separate codes. During axial coding all these loose ends are connected. This way concepts are identified.
This is the movement towards “the development of analytical categories by incorporating more abstract and theoretically based elements” (Pope and Mays, p. 71). “The process of integration and refining the theory” (Strauss and Corbin 1998, p. 143). During this third and last step in the analytic process concepts are linked, a theory is built. Often a theory is build around one central concept (category of codes).
During the coding process data has been reduced to meaningful conceptualizing categories. Nvivo (see XXX) offers several (visualization) tools (e.g. circle diagrams, charts, matrixes) to discover relations between categories.
[1] In the literature about Grounded Theory ‘codes’ is mostly used but they correspond to what we called ‘conceptualizing categories ‘ before [Add crossref]
Analysis may either be done manually or by using qualitative analysis software, for example Nvivo©[2], Atlas ti©[3], Maxqda©[4], etc.
These Computer-Assisted Qualitative Data Analysis Software (CAQDAS) offer a support to the analyst with the storage, coding and systematic retrieval of qualitative data35. They are able to manage different types of qualitative materials, such as transcripts, texts, videos, images, etc. their utility for the analysis depends on the size of the corpus of analysis (number of interviews, plurality of the data sources) and has not to be automatic. They also could be useful for collaborative purposes when several researchers are analysing the same data. They not guarantee the scientific nature of the results62. Indeed, quality of the results does not depend on the tool used, but on the scientific rigor and the systematic analysis of the data.
[2] http://www.qsrinternational.com/products_nvivo.aspx
[3] http://www.atlasti.com/index.html
Interviews can be presented in a number of ways, there is no specific format to follow. However, alike other research methods, justification and methodology of the study should be provided. The research process should be fully transparent so that any researcher can reproduce it. In addition, it should be comprehensible to the reader.
A possible structure could be:
1. Introduction and Justification
2. Methodology
2.1 How were respondents recruited?
2.2 Description of the sample
2.3 Description of selection biases if any
2.4 What instruments were used to collect the data?
You may want to include the topic list or questionnaire in an appendix
2.5 Over which period of time was the data collected?
3. Results : What are the key findings?
4. Discussion
4.1 What were the strengths and limitations of the information?
4.2 Are the results similar or dissimilar to other findings
(if other studies have been done)?
5. Conclusion and Recommendations
6. Appendices (including the interview guide(s)/ topic guide)
&
When writing up findings qualitative researchers often use quotes from respondents. Quotes are useful in order to63:
Ideally, quotes are anonymous and are accompanied by a pseudonym or description of the respondents. For example, in a research about normal birth, this could be: (Midwife, 36 years). There are however exceptions the rule of anonymity, e.g. stakeholder interviews, in which the identity of the respondent is important for the interpretation of the findings. In that case the respondent should self-evidently be informed and his agreement is needed in order to proceed.
Also in terms of lay out quotations should be different from the rest of the text, for example by using indents, italic fond or quotation marks. Quotes are used to strengthen the argument, but should be used sparingly and in function of the findings. Try to choose citations in a way that all respondents are represented. Be aware that readers might give more weight to themes illustrated with a quotation.
When the research is conducted in another language than the language of the report in which the findings are presented, quotes are most often translated. “As translation is also an interpretive act, meaning may get lost in the translation process (Van Nes et al, 201064, p. 313)”. It is recommended to stay in the original language as long and as much as possible and delay the use of translations to the stage of writing up the findings64.
KCE practice is to translate quotes only for publications in international scientific journals, but not for KCE reports. Although KCE reports are written in English, inserted quotes are in Dutch or French to stay close to the original meaning. The authors should pay attention to the readability of the text and make sure that the text without quotes is comprehensive to English speaking readers.
In this section we want to address quality criteria for the use and evaluation of qualitative research. At the one hand it should guide those who want to apply QRM in their research project(s), at the other hand KCE researchers asked for criteria that allow them to evaluate existing qualitative studies or publications resulting from qualitative studies, for example in function of a systematic review.
“Whatever the method, it needs to be well-defined, well-argued, and well-executed” (Snijders, 2007)
The increasing demand for qualitative research within health and health services research has emerged alongside an increasing demand for the demonstration of methodological rigor and justification of research findings (Reynolds, 2011) . Not only is qualitative research challenged by the current evidence-based practice (EPB) movement in healthcare, also the emergence of meta-analyses (e.g. meta-synthesis) of qualitative research findings urges for quality criteria. Although in quantitative health sciences research, there exist widely-recognized guidelines, no comparable standardized guidelines exist for qualitative research. This can be explained by a lack of consensus related to how to best evaluate “rigor” in qualitative research (Nelson, 2008). Every qualitative paradigm has its own implications regarding the definition of good quality research. First, we introduce the reader briefly in the debate about quality criteria, second, we present the framework of Walsh and Downe (Walsh, 2006) as the most complete and comprehensible list of quality criteria to appraise qualitative research studies, and the framework of Côté and Turgeon as a shorter and practical alternative. For other checklists we refer to Appendix 1.
Among qualitative researchers there is a debate going on between those demanding for explicit criteria, for example in order to serve systematic reviewing and evidence-based practice, and those who argue that such criteria are neither necessary nor desirable (Hammersley, 2007). The quest for quality criteria assumes that qualitative research is a unified field, but this image does not fit reality. In fact, apart from a variety of other positions (e.g. symbolic interactionism, hermeneutics, phenomenology, ethnography) three main paradigms can be discerned in relation to this discussion:
The position one takes in the debate about quality criteria is heavily influenced by the paradigm one feels most attracted to, or identifies with.
Most of the quality criteria are applicable to all research, both quantitative and qualitative. For example in 2008, Cohen and Crabtree (Cohen, 2008) reviewed and synthesized published criteria for good qualitative research. They identified the following general evaluative criteria: 1) ethical research, 2) importance of the research, 3) clarity and coherence of the research report, 4) use of appropriate and rigorous methods, 5) importance of reflexivity or attending to researcher bias, 6) importance of establishing validity or credibility, 7) Importance of verification or reliability. Researcher bias, validity, and reliability are most heavily influenced by quantitative approaches. Table 6 bridges quantitative and qualitative research by illustrating the parallels between criteria for conventional quantitative inquiries and qualitative research.
Table 6 – Lincoln and Guba’s translation of terms
|
Quantitative research |
Qualitative research |
Methods to ensure quality |
|
Internal validity |
Credibility: Are the findings credible? |
Member checks[a]; prolonged engagement in the field; data triangulation |
|
External validity |
Transferability: Are the findings applicable in other contexts? |
Thick description[b] of setting and/or participants |
|
Reliability |
Dependability: Are the findings consistent and could they be repeated? |
Audit – researcher’s documentation of data, methods and decisions; researcher triangulation |
|
Objectivity |
Confirmability: To which extend are the findings shaped by the respondents and not researcher bias, motivation or interests? |
Audit and reflexivity – e.g. awareness of position as a researcher and its influence on the data and findings |
Source: Adapted from Finley,2006
In what follows we pay attention to some keywords appearing in Table 6.
“Reflexivity is an awareness of the self in the situation of action and of the role of the self in constructing that situation.” (Bloor and Wood, 2006, p. 145)
Because in qualitative research, the researcher could not be ‘blinded’, he/she has to take into account subjectivity in an explicit way. To demonstrate this reflexive awareness during the research process, the following ‘good practices’ can be used (Green, 2009, p. 195):
“Qualitative research is inherently multimethod in focus (Flick, 2002, p.226-227). However, the use of multiple methods, or triangulation, reflects an attempt to secure an in-depth understanding of the phenomenon in question. Objective reality can never be captured. We know a thing only through its representations. Triangulation is not a tool or a strategy of validation, but an alternative to validation (Flick, 2002, p. 227). The combination of multiple methodological practices, empirical materials, perspectives, and observers in a single study is best understood, then, as a strategy that adds rigor, breadth, complexity, richness, and depth to any inquiry (See Flick, 2002, p. 229)” (Denzin and Lincoln, 2008, p. 7).
Triangulation is the use of several scientific methods, both qualitative and quantitative, to answer the same research question (Bloor, 2006) . Often triangulation is understood as producing the same results by means of several methods, sources or analysts. However, different methods or types of inquiry are sensitive to different nuances, so that they may lead to somewhat different results. In fact, triangulation is more about finding inconsistencies to gain deeper insight into the relationship between the inquiry approach and the subject under study. Thus, finding inconsistencies do not weaken the credibility of the results, but rather strengthen it (Patton, 1999).
Five kinds of triangulation can contribute to the quality and consistency of qualitative data analysis:
These kinds of triangulation protect the researcher against the accusation that findings are an artifact of a single method, or source or investigator’s biases (Patton, 1999).
Earlier in this report we argued that qualitative research is context sensitive and it is not aimed at making generalizations to the wider population. This may appear to contradict with the notion of transferability which is just about the extent to which findings of one study can be applied to other situations (external validity) (Merriam, 1998).
Transferability refers to the responsibility of the researcher to provide sufficient contextual information about the fieldwork to enable the reader to determine how far he can be confident in transferring the findings to other situations (Firestone, 1993). However, the situation might be complicated by the possibility that factors considered by the researcher to be unimportant, and consequently unaddressed in the research report, may be critical in the eyes of a reader(Firestone, 1993) .
We have found four papers (Reynolds, 2011; Walsh, 2006; Cohen, 2008; Côté and Turgeon, 2005) reviewing the literature on quality criteria or guidelines for qualitative research. One of them (Walsh, 2006) provides us with a synthesis of eight existing checklists and summary frameworks (see Table 7). This checklist is quite detailed and is designed in function of meta-synthesis, which is a kind of systematic review of qualitative research papers.
The list of criteria was built in order to rigorously appraise studies first before submitting them to the meta-synthesis technique. Agreement on criteria to judge rigor was necessary in order to decide which studies to include in the meta-synthesis. Walsh and Downe (Walsh, 2006) tabulated the characteristics mentioned in each of the papers in their review. Then they mapped together the characteristics given in all the included papers, sorting them by the number of checklists in which they appeared. In the next step both authors independently attempted a synthesis before coming together to discuss. Redundant criteria were excluded if both authors agreed that the exclusion would not change the final judgment on the meaningfulness and applicability of a piece of qualitative research. Finally the table below was constructed, structured into three columns, namely stages, essential criteria and specific prompts. Although some criteria may seem self-evident, others are less obviously fundamental (Walsh, 2006). This list of criteria is very detailed. In some studies, especially those with short time frame, a shorter and more pragmatic hands-on list could be practical. Therefore we also added the grid of Côté and Turgeon [c] (Table 8) which is shorter, adapted to the specific context of heath care and easier to use for researchers who are less familiar with qualitative research. Other checklists are described in Appendix 1.
The use of a checklist may improve qualitative research, however they should be used critically: not every criterion is appropriate to every research context (Barbour, 2001). For example the list of Coté and Turgeon mentions interpretation of results in an innovative way as a quality criterion (point 10, Table 8), while this is not necessarily the case. Most important is a systematic approach during research process. For example the credibility of data analysis could encompass the use of software (Table 7), triangulation and/or member checking (point 7, Table 8), whereas a systematic approach with a detailed description of each step in the research process could have been sufficient.
Table 7 – Summary criteria for appraising qualitative research studies
|
Stages |
Essential criteria |
Specific prompts |
|
Scope and purpose |
Clear statement of, and rationale for, research question / aims / purposes |
|
|
|
Study thoroughly contextualized by existing literature |
|
|
Design |
Method/design apparent, and consistent with research intent |
|
|
|
Data collection strategy apparent and appropriate |
|
|
Sampling strategy |
Sample and sampling method appropriate |
|
|
Analysis |
Analytic approach appropriate |
|
|
Interpretation |
Context described and taken account of in interpretation |
|
|
|
Clear audit trail given |
|
|
|
Data used to support interpretation |
|
|
Reflexivity |
Researcher reflexivity demonstrated |
|
|
Ethical dimensions |
Demonstration of sensitivity to ethical concerns |
|
|
Relevance and transferability |
Relevance and transferability evident |
|
Source: Walsh and Downe, 2006
Table 8 – Grid for the critical appraisal of qualitative research articles in medicine and medical education
|
|
Yes |
+/- |
No |
|
Introduction |
|||
|
1. The issue is described clearly and corresponds to the current state of knowledge. |
|||
|
2. The research question and objectives are clearly stated and are relevant to qualitative research (e.g. the process of clinical or pedagogical decision-making). |
|||
|
Methods |
|||
|
3. The context of the study and the researchers’ roles are clearly described (e.g. setting in which the study takes place, bias). |
|||
|
4. The method is appropriate for the research question (e.g. phenomenology, grounded theory, ethnography). |
|||
|
5. The selection of participants is appropriate to the research question and to the method selected (e.g. key participants, deviant cases). |
|||
|
6. The process for collecting data is clear and relevant (e.g. interview, focus group, data saturation). |
|||
|
7. Data analysis is credible (e.g. triangulation, member checking). |
|||
|
Results |
|||
|
8. The main results are presented clearly. |
|||
|
9. The quotations make it easier to understand the results. |
|||
|
Discussion |
|||
|
10. The results are interpreted in credible and innovative ways. |
|||
|
11. The limitations of the study are presented (e.g. transferability). |
|||
|
Conclusion |
|||
|
12. The conclusion presents a synthesis of the study and proposes avenues for further research. |
Source: Côté and Turgeon,2005
[a] Informants may be asked to read transcripts of dialogues in which they have participated to check whether their words match with what they actually intended (Shenton 2004), or they may be asked to check the accuracy of early findings (Bloor 2006) 35.
[b] Thick description refers to rich qualitative data allowing not only the description of social behaviour, but also to connect it to the broader context in which it occurred (Mortelmans 2009).
To conclude this chapter on quality criteria we wish to warn against a rigid use of checklists and quality criteria in qualitative research and to argue instead for flexible use. Moreover this also applies to quantitative research.
Barbour criticizes the widespread use and description of assumed quality indicators like theoretical sampling, grounded theory, multiple coding, and triangulation in scientific articles, as an unequivocal guarantee of robustness. These dimensions of qualitative research should be embedded within a broader understanding of the qualitative research design and not “stuck on as a badge of merit” (Barbour, 2001, p. 1115).
We agree with Walsh and Downe (Walsh, 2006) that a checklist is indicative of good quality research, but not a guarantee.
Key messages